Abstract

Artificial neural networks (ANNs) were used in this study to determine factors that control the polydispersity index (PDI) in an acetaminophen nanosuspension which was prepared using nanoprecipitation in microfluidic devices. The PDI of prepared formulations was measured by dynamic light scattering. Afterwards, the ANNs were applied to model the data. Four independent variables, namely, surfactant concentration, solvent temperature, and flow rate of solvent and antisolvent were considered as input variables, and the PDI of acetaminophen nanosuspension was taken as the output variable. The response surfaces, generated as 3D graphs after modeling, were used to survey the interactions happening between the input variables and the output variable. Comparison of the response surfaces indicated that the antisolvent flow rate and the solvent temperature have reverse effect on the PDI, whereas solvent flow rate has direct relation with PDI. Also, the effect of the concentration of the surfactant on the PDI was found to be indirect and less influential. Overall, it was found that minimum PDI may be obtained at high values of antisolvent flow rate and solvent temperature, while the solvent flow rate should be kept to a minimum.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.