Abstract

In this present work, artificial neural networks (ANN) are applied for the prediction of percentage adsorption efficiency for the removal of Cu(II) ions from industrial leachate by pumice. The effect of operational parameters such as initial pH, adsorbent dosage, temperature, and contact time is studied to optimize the conditions for maximum removal of Cu(II) ions. The model is first developed using a three layer feed forward backpropagation network with 4, 8 and 4 neurons in first, second and third layers, respectively. Furthermore, radial basis function (RBF) network is also proposed and its performance is compared to traditional network type. A comparison between the ANN models presents high correlation coefficient ( R 2 = 0.999) and shows that the RBF network model is able to predict the removal of Cu(II) from industrial leachate more accurately.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.