Abstract

In the recent economic crises, one of the precise uniqueness that all stock markets have in common is the uncertainty. An attempt was made to forecast future index of the Malaysia Stock Exchange Market using artificial neural network (ANN) model and a traditional forecasting tool – Multiple Linear Regressions (MLR). This paper starts with a brief introduction of stock exchange of Malaysia, an overview of artificial neural network and machine learning models used for prediction. System design and data normalization using MINITAB software were described. Training algorithm, MLR Model and network parameter models were presented. Best training graphs showing the training, validation, test and all regression values were analyzed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.