Abstract
Urinary tract infections (UTIs) are among the most common infections occurring across all age groups. UTIs are a well-known cause of acute morbidity and chronic medical conditions. The current diagnostic methods of UTIs remain sub-optimal. The development of better diagnostic tools for UTIs is essential for improving treatment and reducing morbidity. Artificial intelligence (AI) is defined as the science of computers where they have the ability to perform tasks commonly associated with intelligent beings. The objective of this study was to analyze current views regarding attempts to apply artificial intelligence techniques in everyday practice, as well as find promising methods to diagnose urinary tract infections in the most efficient ways. We included six research works comparing various AI models to predict UTI. The literature examined here confirms the relevance of AI models in UTI diagnosis, while it has not yet been established which model is preferable for infection prediction in adult patients. AI models achieve a high performance in retrospective studies, but further studies are required.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.