Abstract
Over the last decade the classical Chorin–Témam projection method has been utilized to address fluid-structure interaction in a semi-implicit manner. In previous studies the fluid projection step is fully coupled with the structural motion due to the divergence-free constraint. A set of simultaneous equations thus have to be iteratively solved. To overcome this difficulty, a simple and accurate partitioned semi-implicit coupling method is proposed based on the artificial compressibility (AC) in this paper. The iterated AC parameter decouples the pressure, end-of-step velocity and structural motion within the characteristic-based split scheme. The present approach is completely matrix-free and has unlimited access to the finite elements. Its performance is demonstrated for an oscillating bluff body subjected to uniform flows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.