Abstract

Antibodies raised against the major 27 kDa protein electrophoretically eluted from isolated gap junctions and affinity purified against the antigen have been used to explore the role of communication through gap junctions in the early amphibian and mouse embryos. In both species, injection of the antibodies into one cell completely blocks both dye transfer and electrical coupling between cells connected by gap junctions. In the amphibian embryo the generation of a communication-incompetent clone of cells leads to patterning defects in the region derived from the antibody-injected cell. In the mouse embryo, blocking cell-to-cell communication leads to decompaction of the communication-incompetent cells. The possible significance of these findings in relation to development in general and to the organization of the first transporting epithelia to appear during development is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.