Abstract

CdTe/CdS and CdTe/ZnO thin film solar cells were grown with a high vacuum evaporation based low temperature process (≤ 420 °C). Aluminium doped zinc oxide (AZO) was used as transparent conducting oxide (TCO) material. AZO exhibited excellent stability during the solar cell processing, and no significant change in electrical conductivity or transparency was observed. The current density loss due to absorption in the 1 μm thick AZO layer with 5 Ω per square sheet resistance was found to be 1.2 mA/cm 2. We investigated the influence of an intrinsic ZnO layer (i:ZnO) in combination with various CdS thicknesses. The i:ZnO layer was found to significantly increase the open circuit voltage of the solar cells with very thin CdS layer. Increasing thickness of the i:ZnO layer leads to UV absorption losses, narrowing of the depletion layer width and hence reduced collection efficiency in the long wavelength (685–830 nm) part. With AZO/i:ZnO bi-layer TCO we could achieve cell efficiencies of 15.6% on glass and 12.4% on the flexible polyimide film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.