Abstract
Electrospun non-woven structures have the potential to form bioresorbable vascular grafts that promote tissue regeneration in situ as they degrade and are replaced by autologous tissue. Current bioresorbable grafts lack appropriate regeneration potential since they do not have optimal architecture, and their fabrication must be altered by the manipulation of process parameters, especially enhancing porosity. We describe here an air-impedance process where the solid mandrel is replaced with a porous mandrel that has pressurized air exiting the pores to impede fiber deposition. The mandrel design, in terms of air-flow rate, pore size, and pore distribution, allows for control over fiber deposition and scaffold porosity, giving greater cell penetration without a detrimental loss of mechanical properties or structural integrity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.