Abstract

In the past decade, two themes have emerged across suicide research. First, according to meta-analyses, the ability to predict and prevent suicidal thoughts and behaviours is weaker than would be expected for the size of the field. Second, review and commentary papers propose that technological and statistical methods (such as smartphones, wearables, digital phenotyping and machine learning) might become solutions to this problem. In this Review, we aim to strike a balance between the pessimistic picture presented by these meta-analyses and the optimistic picture presented by review and commentary papers about the promise of advanced technological and statistical methods to improve the ability to understand, predict and prevent suicide. We divide our discussion into two broad categories. First, we discuss the research aimed at assessment, with the goal of better understanding or more accurately predicting suicidal thoughts and behaviours. Second, we discuss the literature that focuses on prevention of suicidal thoughts and behaviours. Ecological momentary assessment, wearables and other technological and statistical advances hold great promise for predicting and preventing suicide, but there is much yet to do.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.