Abstract

Spin labeling with a maleimido spin label has been used to investigate conformational changes of bovine cytochrome c oxidase. These experiments show that the spin label is immobilized to a lesser degree when the enzyme is in the “oxygenated” form than it is in the oxidized state and support the view that the oxygenated form is a conformational variant. Experiments in which the maleimido spin-labeled cytochrome c oxidase was titrated with H 2O 2 reveal that the peroxide-treated enzyme, although possessing an absorption spectrum similar to that of the oxygenated form, has an electron paramagnetic resonance (epr) spectrum that is different from that of either the oxygenated form or the oxidized state. Extremes of pH cause a marked decrease in the degree of immobilization of maleimido spin labels bound to the oxidase. Alterations in the epr spectrum are reversible if the pH is held between 5.3 and 10.2 but are irreversible outside that range. Urea and guanidine hydrochloride also decrease the immobilization of the spin labels bound to the oxidase. The nature of the epr spectra indicates that under these conditions the enzyme assumes a more open conformation. Exposure to concentrations of sodium dodecyl sulfate as high as 10% does not result in as much loss of the immobilization as with urea or guanidine. Detergents such as cholate, Tween 80, and Triton X-100 have no significant effect on the epr spectrum of maleimido spin-labeled cytochrome c oxidase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.