Abstract
Assessment of a new chemical entity for cytochrome P450 (CYP) enzyme induction at an early stage in discovery is crucial to prevent potential drug-drug interactions. CYP3A, the most abundant CYP isoform in the liver, metabolizes approximately 50% of drugs currently on the market and is also a highly inducible enzyme. The use of both rat and human hepatocyte culture for the prediction of in vivo CYP3A induction has become refined and validated and is considered a standard in vitro model. The current evaluation of CYP3A enzyme induction involves the use of substrates requiring subsequent analysis of metabolites by high-performance liquid chromatography/mass spectrometry, which adds considerable time and cost. In the present study, we describe the use of a novel luminogenic substrate, luciferin-6'-pentafluoro-benzyl ether (PFBE), which allows for a fast and selective measurement of CYP3A enzyme induction in cultured rat hepatocytes. The extent of induction was evaluated using cells treated for 3 d with the prototypical inducers, dexamethasone, phenobarbital, and pregnenolone 16 alpha-carbonitrile (PCN). Enzyme activity was measured in the treated cells either by the depentafluorobenzylation of luciferin-PFBE or the testosterone 6-beta-hydroxylation. Using both methods, dexamethasone and PCN-treated cells exhibited strong CYP3A activity, whereas phenobarbital treatment resulted in a weak response. The fold induction varied between both methods, but this variability can be controlled by normalizing data from each treatment to a positive control. The results indicate that luciferin-PFBE is an attractive alternative to the use of conventional substrate, testosterone, providing a sensitive, robust, and rapid method compatible with the multiwell plate format for the assessment of CYP3A induction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: In Vitro Cellular & Developmental Biology - Animal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.