Abstract

The comprehensive predictive model described in this paper has been briefly outlined for a single particular set of repository parameters in an earlier paper. A general detailed derivation and a detailed illustration of the use of this method in comparative evaluation of a variety of waste-form materials are given. The model focuses on the long-term leach rate of materials under all possible water flow rates through a repository site, given any exposure configuration (i.e., ratio between the exposed area of the waste form and the volume of water with which it is in effective contact) which is considered most representative of the actual repository conditions. The model permits direct calculation of the annual fractional release rate of the major matrix elements as well as of any other components of a waste form. This makes it possible to evaluate how well various waste forms meet long-term durability criteria such as those proposed by the U.S. Nuclear Regulatory Commission, makes it possible to obtain such release rates, corresponding to the entire range of flow conditions expected in a repository down to very slow flow rates by conducting dynamic laboratory tests at practical rates of leachant exchange at relatively high surfaceto-volume ratios, followingmore » the leachate composition until the leach rates approach constant values, and normalizing the data to the surface-to-volume ratio expected under repository conditions. The purpose of this paper is to outline the general derivation of the model and to describe the results of applying the model in dynamic leach tests carried out on five different waste-form materials over the entire range of effective flow rates expected under repository conditions.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call