Abstract
BackgroundThe Peninsula Health Falls Risk Assessment Tool (PH-FRAT) is a validated and widely applied tool in residential aged care facilities (RACFs) in Australia. However, research regarding its use and predictive performance is limited. This study aimed to determine the use and performance of PH-FRAT in predicting falls in RACF residents.MethodsA retrospective cohort study using routinely-collected data from 25 RACFs in metropolitan Sydney, Australia from Jul 2014-Dec 2019. A total of 5888 residents aged ≥65 years who were assessed at least once using the PH-FRAT were included in the study. The PH-FRAT risk score ranges from 5 to 20 with a score > 14 indicating fallers and ≤ 14 non-fallers. The predictive performance of PH-FRAT was determined using metrics including area under receiver operating characteristics curve (AUROC), sensitivity, specificity, sensitivityEvent Rate(ER) and specificityER.ResultsA total of 27,696 falls were reported over 3,689,561 resident days (a crude incident rate of 7.5 falls /1000 resident days). A total of 38,931 PH-FRAT assessments were conducted with a median of 4 assessments per resident, a median of 43.8 days between assessments, and an overall median fall risk score of 14. Residents with multiple assessments had increased risk scores over time. The baseline PH-FRAT demonstrated a low AUROC of 0.57, sensitivity of 26.0% (sensitivityER 33.6%) and specificity of 88.8% (specificityER 82.0%). The follow-up PH-FRAT assessments increased sensitivityER values although the specificityER decreased. The performance of PH-FRAT improved using a lower risk score cut-off of 10 with AUROC of 0.61, sensitivity of 67.5% (sensitivityER 74.4%) and specificity of 55.2% (specificityER 45.6%).ConclusionsAlthough PH-FRAT is frequently used in RACFs, it demonstrated poor predictive performance raising concerns about its value. Introducing a lower PH-FRAT cut-off score of 10 marginally enhanced its predictive performance. Future research should focus on understanding the feasibility and accuracy of dynamic fall risk predictive tools, which may serve to better identify residents at risk of falls.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.