Abstract

Summary1. The caudal neurosecretory system is defined in teleosts as a complex of secretory neurones (Dahlgren cells) in the caudal spinal cord leading by a tract to neurohaemal tissue organized as a typical neurosecretory storage‐release organ: the urophysis.2. The teleost urophysis is generally a distinct, easily recognizable, lobate structure of variable external form. Significant morphological variations lie in the organization of the neurosecretory fibres in relation to the vascular bed and in the degree of penetration of the meninx by the neurosecretory fibres to form an organ external to the spinal cord proper.3. The elasmobranch caudal system is composed of large cells with short axons projecting to a diffuse vascular bed; there is no organized urophysis.4. The caudal neurosecretory system and its urophysis appear late in post larval development by comparison with the hypothalamic neurosecretory system. The Dahlgren cells originate from the ependyma in development and also during regeneration of the caudal system in adult life.5.The elasmobranch system may represent the more primitive condition, and stages in the evolution of the advanced urophysial types can be visualized. The particular histology shown by the caudal system appears to have taxonomic significance.6.The cytology of the Dahlgren cell and its neurosecretory material is described. The proteinaceous neurosecretory material has an affinity for acid stains but not for the Gomori stains or reagents demonstrating SH/SS groups. The inclusions visible at the light‐microscope level are aggregates of elementary neurosecretory granules, 800–2500A diameter, which originate from Golgi centres. The possible participation of preterminal axonal regions–and tubular systems evident therein—in the formation of neurosecretory material is considered.7.The structure of the axon terminals raises questions about the way in which neurohormone may be released into the blood. Small vesicles have been variously interpreted as cholinergic synaptic vesicles and as products of the fragmentation of membranes of elementary neurosecretory granules. Evidence for the release of ‘neuro‐secretion centripetally’ into the cerebrospinal fluid also exists.8.Functional analysis of the caudal neurosecretory system has proven most difficult, The bulk of earlier data and more recent information indicate a role in ionic regulation. Increased sodium uptake by the gills of goldfish has been reported, as a result of administration of urophysial extract, and electrophysiological studies indicate a responsiveness of the system to variations in blood sodium ion concentration. The urophysis also has a definite pressor effect in eels and will stimulate water retention in anurans. The early claim of Enami that the system was involved in buoyancy regulation has never been substantiated. It must be admitted that the function of this system, virtually ubiquitous in teleost and elasmobranch fishes at least, has been anything but established and still represents a major challenge to comparative physiologists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.