Abstract

Thiol compounds with low-molecular weight, such as glutathione, mycothiol (MSH), bacillithiol, and ergothioneine (ERG), are known to protect microorganisms from oxidative stresses. Mycobacteria and actinobacteria utilize both MSH and ERG. The biological functions of MSH in mycobacteria have been extensively studied by genetic and biochemical studies, which have suggested it has critical roles for detoxification in cells. In contrast, the biological functions of ERG remain ambiguous because its biosynthetic genes were only recently identified in Mycobacterium avium. In this study, we constructed mutants of Streptomyces coelicolor A3(2), in which either the MSH or ERG biosynthetic gene was disrupted, and examined their phenotypes. A mshC (SCO1663)-disruptant completely lost MSH productivity. In contrast, a disruptant of the egtA gene (SCO0910) encoding γ-glutamyl-cysteine synthetase unexpectedly retained reduced productivity of ERG, probably because of the use of l-cysteine instead of γ-glutamyl-cysteine. Both disruptants showed delayed growth at the late logarithmic phase and were more susceptible to hydrogen peroxide and cumene hydroperoxide than the parental strain. Interestingly, the ERG-disruptant, which still kept reduced ERG productivity, was more susceptible. Furthermore, the ERG-disruptant accumulated 5-fold more MSH than the parental strain. In contrast, the amount of ERG was almost the same between the MSH-disruptant and the parental strain. Taken together, our results suggest that ERG is more important than MSH in S. coelicolor A3(2).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.