Abstract

The urban metabolism of Metropolitan Lima, the largest urban agglomeration in Peru, which has recently surpassed 10 million inhabitants, was analyzed in this study. This coastal megacity, located within the Rimac, Chillón, and Lurin watersheds constitutes the socioeconomic center of the country and is the hub of the main import and export routes. A multi-layer approach was used to explore material and energy flows in the Peruvian capital for a 10-year timeframe. Results show that in 2006 the GDP of the 49 districts that shape the metropolitan area of Lima was 105.2 billion USD-PPP, while in 2014 it reached about 200 billion USD-PPP. Based on this growth, we highlight that energy, electricity and water flows experienced a linear increase with respect to GDP, being the electricity consumption in years 2006, 2011 and 2014, 7295, 10,112, and 11,465 GWh, respectively. Regarding demographics, population growth ratios of GDP (650%), electricity consumption (400%), solid waste production (250%), and water (100%) confirm the results of super linear scaling found by Kennedy et al. (2015) for the other megacities. Finally, the increase in greenhouse gas (GHG) emissions was computed following an important shift in the primary energy sources to produce electricity. The most important change was linked to the shift from hydropower to natural gas, a trend that initiated in 2006. For instance, in 2001 79% of the total electricity production came from hydropower, whereas in 2014 69% was linked to natural gas. This shift produced an increase of GHG emissions of more than 200% in 2014 when compared to the electricity generation mix of 2001. Following these results, we strongly encourage policies for the decarbonization of the electricity production sector, as well as for mobility infrastructures, e.g., electric public and transport sector, with a progressive shift toward electric mobility.

Highlights

  • IntroductionMajor material, water and energy flows are connected to these systems (Hodson et al, 2012) and resource use is expected to increase in the future, as the urban population is projected to increase to 70% in 2050

  • More than 54% of the world’s population currently lives in cities

  • A direct relation of the metabolic flows with GDP was demonstrated, finding that linear models able to describe with greater accuracy the temporal evolution of electricity, energy, and water consumption, as well as solid waste disposal

Read more

Summary

Introduction

Major material, water and energy flows are connected to these systems (Hodson et al, 2012) and resource use is expected to increase in the future, as the urban population is projected to increase to 70% in 2050. While these resources are essential to carry out the diverse array of activities performed in urban systems, their unprecedented consumption and the associated unsustainable waste generation cause important environmental impacts that affect society and biodiversity. The multiple interactions and interconnections that a complex city system shows should be managed considering the framework of urban thermodynamics. This deals with the application of the thermodynamic laws and concepts to identify and support the quantification of city dimensions and subdimension, flows, links and correlations that are present in a complex system like a city (Filchakova et al, 2012)

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.