Abstract
This presentation has been restricted to the role of insulin in glucose transport in muscle cells and deals mainly with experiments using the perfused rat heart. The several possible means for glucose transfer into cells, diffusion, pores, pinocytosis, carriers, and dimerization, have been discussed; and arguments in favor of the carrier theory, namely, specificity, kinetics, inhibition, competition, and counterflow, have been elaborated. Glucose uptake has been considered to consist of three sequential steps: (1) passage of glucose from within the capillary to the cell surface, (2) transport across the cell membrane, and (3) metabolism of glucose within the cell. The first is considered to take place by diffusion and not to be significantly limiting under normal conditions, nor to be influenced by insulin. Transport across the cell membrane is thought to be mainly under the control of insulin and is the major rate-limiting step in glucose uptake when the extracellular glucose levels are in the normal range. Metabolism of glucose within the cell is the major rate-limiting step in glucose uptake when intracellular glucose concentration is so high that its phosphorylation is near saturation.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.