Abstract

Given an arbitrary spectral space $X$, we consider the set $\mathcal{X} (X)$ of all nonempty subsets of $X$ that are closed with respect to the inverse topology. We introduce a Zariski-like topology on $\mathcal{X} (X)$ and, after observing that it coincides the upper Vietoris topology, we prove that $\mathcal{X} (X)$ is itself a spectral space, that this construction is functorial, and that $\mathcal{X} (X)$ provides an extension of $X$ in a more ``complete'' spectral space. Among the applications, we show that, starting from an integral domain $D$, $\mathcal{X} (Spec (D))$ is homeomorphic to the (spectral) space of all the stable semistar operations of finite type on $D$.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.