Abstract

ABSTRACT A 3-D basin model of the southern Mesopotamian Basin, southern Iraq, was built in order to quantify key aspects of the petroleum system. The model is based on detailed seismic interpretation and organic geochemical data, both for source rocks and oils. Bulk kinetic analysis for three source rock samples was used to quantify petroleum generation characteristics and to estimate the temperature and timing of petroleum generation. These analyses indicate that petroleum generation from the Yamama source rock (one of the main source rocks in the study area) starts at relatively low temperatures of 70–80°C, which is typical for Type II-S kerogen at low to moderate heating rates typical of sedimentary basins. Petroleum system analysis was achieved using the results from 1-D, 2-D, and 3-D basin modelling, the latter being the major focus of this study. The 1-D model reveals that the Upper Jurassic–Lower Cretaceous sediments are now within the oil window, whereas the formations that overlie the Yamama Formation are still immature in the entire study area. Present-day temperature reflects the maximum temperature of the sedimentary sequence, which indicates that no strong regional uplift affected the sedimentary rocks in the past. The 3-D model results indicate that oil generation in the Yamama source rock already commenced in the Cretaceous. At some locations of the basin this source rock reaches a present-day maximum temperature of 140–150°C. The most common migration pathways are in the vertical direction, i.e. direct migration upward from the source rock to the reservoir. This is partly related to the fact that the Lower Cretaceous reservoir horizons in southern Iraq directly overlay the source rock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.