Abstract

The calibration and verification of high-precision electronic distance meters (EDMs) requires well-characterized and calibrated geodetic baselines. As the length measurements are performed typically over several hundred metres in air, a thorough understanding of the environmental conditions is necessary. In the course of a major refurbishment, the 600 m baseline of the Physikalisch-Technische Bundesanstalt at Braunschweig, Germany, was equipped with a dense environmental sensor network. This paper presents the characterization of this novel reference baseline, including the calibration of the inter-pillar distances, and identifies the major sources of uncertainty for such a length standard. A preliminary expanded standard uncertainty (k = 2) of is deduced for single-slope distance comparisons on the baseline. In the course of a full calibration, the additive constant cEDM of an EDM can currently be determined with an expanded uncertainty of U(cEDM)k = 2 = 6.1 × 10−5 m, and its scale correction sEDM with an expanded uncertainty of U(sEDM)k = 2 = 8.2 × 10−7. As an example, a femtosecond laser-based distance measurement over 600 m on this baseline is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.