Abstract
We report the synthesis and full characterization of the entire haloferrocene (FcX) and 1,1′-dihaloferrocene (fcX2) series (X = I, Br, Cl, F; Fc = ferrocenyl, fc = ferrocene-1,1′-diyl). Finalization of this simple, yet intriguing set of compounds has been delayed by synthetic challenges associated with the incorporation of fluorine substituents. Successful preparation of fluoroferrocene (FcF) and 1,1′-difluoroferrocene (fcF2) were ultimately achieved using reactions between the appropriate lithiated ferrocene species and N-fluorobenzenesulfonimide (NFSI). The crude reaction products, in addition to those resulting from analogous preparations of chloroferrocene (FcCl) and 1,1′-dichloroferrocene (fcCl2), were utilized as model systems to probe the limits of a previously reported “oxidative purification” methodology. From this investigation and careful solution voltammetry studies, we find that the fluorinated derivatives exhibit the lowest redox potentials of each of the FcX and fcX2 series. This counterintuitive result is discussed with reference to the spectroscopic, structural, and first-principles calculations of these and related materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.