Abstract

Blood substitutes or oxygen carrying plasma expanders were originally formulated to simulate the transport properties of blood, particularly oxygen carrying capacity, viscosity, p50, and colloid osmotic pressure, under the hypothesis that blood is the most desirable fluid in volume restitution. However, changes introduced into the organism during hemorrhage adversely affect microvascular function due to reflex vasoconstriction which causes the fall of functional capillary density, and lowers tissue oxygenation, conditions that are not universally reversed with retransfusion of blood. The restoration of microvascular function is seldom complete upon retransfusion of blood. New formulations of hemoglobin molecules in solutions whose oncotic pressure is in the range of 60-100 mmHg, p50 is about 5 mmHg, viscosity 3-4 cP, and oxygen carrying capacity in the range of 4-7 g/dl equivalent hemoglobin deliver better microvascular function after resuscitation when compared to whole blood and oxygen carrying plasma expanders with transport properties similar to those of blood. The improved performance is in part due to the increased plasma viscosity which increases capillary transmural pressure which reverses capillary collapse induced during low perfusion pressures. High oncotic pressure reinforces this effect, since it brings more fluid into the circulation. Microvascular transport studies of the effects of resuscitation in shock show that functional capillary density is the primary determinant of survival, thus maintenance of an open and fully perfused microcirculation is more critical than insuring oxygen supply, since closed capillaries lead to the accumulation of slowly diffusing byproducts of metabolism which ultimately become toxic. The required combination of properties can be achieved by conjugating hemoglobin and polyethylene glycol. Resuscitation fluids based on hemoglobin containing vesicles may provide the next level of functional improvement in the formulation of volume restitution fluids since their biophysical properties can be specifically controlled through the inclusion of specialized compounds into the vesicles, and the formulation of the suspending medium.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.