Abstract
The effects of ramped wall temperature, rotation and porosity on mixed convection flow of incompressible second grade fluid are studied. The momentum equation is modelled in a problem of rotating fluid with constant angular velocity subjected to initial and oscillating boundary conditions. The energy equation is also introduced. Some suitable non-dimensional variables are used to write equations into non-dimensional form. Laplace transform method is used to solve these equations in order to obtain the analytical solutions of velocity and temperature profiles. Computations are carried out and presented graphically to analyse the effect of second grade fluid parameter, rotation parameter, porosity parameter, Prandtl number and Grashof number on the profiles. It is found that, for larger values of porosity parameter, the fluid velocity will increase for both primary and secondary velocities. The results also show that, velocity for ramped wall temperature is lower compared to isothermal temperature. It is worth to mention that, the exact solutions obtained in this study can be used to check correctness of the results obtained through numerical schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Malaysian Journal of Fundamental and Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.