Abstract

The importance of the Unruh effect lies in the fact that, together with the related (but distinct) Hawking effect, it serves to link the three main branches of modern physics: thermal/statistical physics, relativity theory/gravitation, and quantum physics. However, different researchers can have in mind different phenomena when they speak of “the Unruh effect” in flat spacetime and its generalization to curved spacetimes. Three different approaches are reviewed here. They are shown to yield results that are sometimes concordant and sometimes discordant. The discordance is disconcerting only if one insists on taking literally the definite article in “the Unruh effect.” It is argued that the role of linking different branches of physics is better served by taking “the Unruh effect” to designate a family of related phenomena. The relation between the Hawking effect and the generalized Unruh effect for curved spacetimes is briefly discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call