Abstract
It is common to use Galilean rotational transformation (GRT) to investigate the Unruh effect for uniformly rotating observers. However, the rotating observer in this subject is an eccentric observer while GRT is only valid for centrally rotating observers. Thus, the reliability of the results of applying GRT to the study of the Unruh effect might be considered as questionable. In this work, the rotational analog of the Unruh effect is investigated by employing two relativistic rotational transformations corresponding to the eccentric rotating observer, and it is shown that in both cases, the detector response function is nonzero. It is also shown that although consecutive Lorentz transformations cannot give a frame within which the canonical construction can be carried out, the expectation value of particle number operator in canonical approach will be zero if we use modified Franklin transformation. These conclusions reinforce the claim that correspondence between vacuum states defined via canonical field theory and a detector is broken for rotating observers. Some previous conclusions are commented on and some controversies are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.