Abstract

We use the concept of the spiral rotation curves universality to investigate the luminous and dark matter properties of the dwarf disc galaxies in the local volume (size $\sim11$ Mpc). Our sample includes 36 objects with rotation curves carefully selected from the literature. We find that, despite the large variations of our sample in luminosities ($\sim$ 2 of dex), the rotation curves in specifically normalized units, look all alike and lead to the lower-mass version of the universal rotation curve of spiral galaxies found in Persic et al. We mass model the double normalized universal rotation curve $V(R/R_{opt})/V_{opt}$ of dwarf disc galaxies: the results show that these systems are totally dominated by dark matter whose density shows a core size between 2 and 3 stellar disc scale lengths. Similar to galaxies of different Hubble types and luminosities, the core radius $r_0$ and the central density $\rho_0$ of the dark matter halo of these objects are related by $ \rho_0 r_0 \sim 100\hspace{0.1cm} \mathrm{M_\odot pc^{-2}}$. The structural properties of the dark and luminous matter emerge very well correlated. In addition, to describe these relations, we need to introduce a new parameter, measuring the compactness of light distribution of a (dwarf) disc galaxy. These structural properties also indicate that there is no evidence of abrupt decline at the faint end of the baryonic to halo mass relation. Finally, we find that the distributions of the stellar disc and its dark matter halo are closely related.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.