Abstract
Let A be a basic connected finite dimensional algebra over an algebraically closed field k. Assuming that A is monomial and that the ordinary quiver Q of A has no oriented cycle and no multiple arrows, we prove that A admits a universal cover with group the fundamental group of the underlying space of Q.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.