Abstract
We define a new one-parameter model on the unit interval, called the unit-improved second-degree Lindley distribution, and obtain some of its structural properties. The methods of maximum likelihood, bias-corrected maximum likelihood, moments, least squares and weighted least squares are used to estimate the unknown parameter. The finite sample performance of these methods are investigated by means of Monte Carlo simulations. Moreover, we introduce a new regression model as an alternative to the beta, unit-Lindley and simplex regression models and present a residual analysis based on Pearson and Cox–Snell residuals. The new models are proved empirically to be competitive to the beta, Kumaraswamy, simplex, unit-Lindley, unit-Gamma and Topp–Leone models by means of two real data sets. Empirical findings indicate that the proposed models can provide better fits than other competitive models when the data are close to the boundaries of the unit interval.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.