Abstract

We propose a mathematical programming-based approach to optimize the unit commitment problem with alternating current optimal power flow (ACOPF) network constraints. This problem is a nonconvex mixed-integer nonlinear program (MINLP) that we solve through a solution technique based on the outer approximation method. Our solution technique cooptimizes real and reactive power scheduling and dispatch subject to both unit commitment constraints and ACOPF constraints. The proposed approach is a local solution method that leverages powerful linear and mixed-integer commercial solvers. We demonstrate the relative economic and operational impact of more accurate ACOPF constraint modeling on the unit commitment problem, when compared with copperplate and DCOPF constraint modeling approaches; we use a six-bus, the IEEE RTS-79, and the IEEE-118 test systems for this analysis. Our approach can be extended to solve larger scale power systems as well as include security constraints or uncertainty through decomposition techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call