Abstract

The Euler-Lagrange equations corresponding to a Lagrange density which is a function of g ij and its first two derivatives are investigated. In general these equations will be of fourth order in g ij. Necessary and sufficient conditions for these Euler-Lagrange equations to be of second order are obtained and it is shown that in a four-dimensional space the Einstein field equations (with cosmological term) are the only permissible second order Euler-Lagrange equations. This result is false in a space of higher dimension. Furthermore, the only permissible third order equation in the four-dimensional case is exhibited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.