Abstract

The properties of the confined liquid are dramatically different from those of the bulk state, which were reviewed in the present work. We performed large-scale molecular dynamics simulations and full-atom nonequilibrium molecular dynamics simulations to investigate the shear response of the confined simple liquid as well as the n-hexadecane ultrathin films. The shear viscosity of the confined simple liquid increases with the decrease of the film thickness. Apart from the well-known ordered structure, the confined n-hexadecane exhibited a transition from 7 layers to 6 in our simulations while undergoing an increasing shear velocity. Various slip regimes of the confined n-hexadecane were obtained. Viscosity coefficients of individual layers were examined and the results revealed that the local viscosity coefficient varies with the distance from the wall. The individual n-hexadecane layers showed the shear-thinning behaviors which can be correlated with the occurrence of the slip. This study aimed at elucidating the detailed shear response of the confined liquid and may be used in the design and application of micro- and nano-devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.