Abstract
Typical skeletal muscles are composed of mixed muscle fiber types, which are classified as slow-twitch (type I) and fast-twitch (type II) fibers, whereas pectoralis major muscles (PMs) in broiler chickens are 100% composed of type IIb fast-twitch fibers. Since metabolic properties differ among muscle fiber types, the combination of muscle fiber types is involved in physiological functions and pathological conditions in skeletal muscles. In this study, using serial block-face scanning electron microscopy, we compared three-dimensional (3D) mitochondrial properties in type IIb fibers in broiler PMs and those in type I fibers of broiler gastrocnemius muscles (GMs) heterogeneously composed of slow- and fast-twitch muscle fibers. In type I fibers in the GMs, elongated mitochondria with numerous interconnections to form a substantial network among myofibrils were observed. Along with lipid droplets sandwiched by mitochondria, these features are an adaptation to effective oxidative respiration and constant oxidative damage in slow-twitch muscle fibers. In contrast, type IIb fibers in the PMs showed small and ellipsoid-shaped mitochondria with few interconnections and no lipid droplets, forming a sparse network. The mitochondrial spatial network comprises of active mitochondrial dynamics to reduce mitochondrial damage; therefore, type IIb fibers possess physiologically low capacity to maintain mitochondrial wellness due to static mitochondrial dynamics. Based on 3D mitochondrial properties, we discussed the contrasting physiological functions between type I and IIb fibers and proposed a high contractile power and low stress resistance as unique physiological properties of broiler PMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.