Abstract

A natural upper bound for the maximum number of vertices in a mixed graph with maximum undirected degree r, maximum directed out-degree z and diameter k is given by the mixed Moore bound. Graphs with order attaining the Moore bound are known as Moore graphs, and they are very rare. Besides, graphs with prescribed parameters and order one less than the corresponding Moore bound are known as almost Moore graphs. In this paper we prove that there is a unique mixed almost Moore graph of diameter k = 2 and parameters r = 2 and z = 1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.