Abstract
Frankl’s union-closed sets conjecture states that in every finite union-closed family of sets, not all empty, there is an element in the ground set contained in at least half of the sets. The conjecture has an equivalent formulation in terms of graphs: In every bipartite graph with least one edge, both colour classes contain a vertex belonging to at most half of the maximal stable sets.We prove that, for every fixed edge-probability, almost every random bipartite graph almost satisfies Frankl’s conjecture.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.