Abstract
The COVID-19 pandemic has posed an unprecedented challenge to individuals around the globe. To mitigate the spread of the virus, many states in the U.S. issued lockdown orders to urge their residents to stay at their homes, avoid get-togethers, and minimize physical interactions. While many offline workers are experiencing significant challenges performing their duties, digital technologies have provided ample tools for individuals to continue working and to maintain their productivity. Although using digital platforms to build resilience in remote work is effective, other aspects of remote work (beyond the continuation of work) should also be considered in gauging true resilience. In this study, we focus on content creators, and investigate how restrictions in individual’s physical environment impact their online content creation behavior. Exploiting a natural experimental setting wherein four states issued state-wide lockdown orders on the same day whereas five states never issued a lockdown order, and using a unique dataset collected from a short video-sharing social media platform, we study the impact of lockdown orders on content creators’ behaviors in terms of content volume, content novelty, and content optimism. We combined econometric methods (difference-in-differences estimations of a matched sample) with machine learning-based natural language processing to show that on average, compared to the users residing in non-lockdown states, the users residing in lockdown states create more content after the lockdown order enforcement. However, we find a decrease in the novelty level and optimism of the content generated by the latter group. Our findings have important contributions to the digital resilience literature and shed light on managers’ decision-making process related to the adjustment of employees’ work mode in the long run. Our findings also have important implications for designing digital platforms that are used for building resilience in an ecosystem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.