Abstract

This work studies two important temporal fractional nonlinear evolution equations, namely the (2+1)-dimensional Chaffee–Infante equation and (1+1)-dimensional Zakharov equation by way of the unified method along with properties of local M-derivative. The typical structures of fractional optical soliton wave solutions are obtained in polynomial and rational forms. Further, to grant the validity of non-singular solutions are given with limitation conditions and graphically depicted in 3D. Also, to expose the effect of a local fractional parameter on expected non-singular solutions are depicted through 2D graphs. The predicted solutions are revealing that the proposed approach is straightforward and valuable to find the solitary wave solutions of other nonlinear evolution equations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.