Abstract

The Unified Interaction Model (UNIM) simulates the linear/supralinear dose response of the glow peaks of LiF:Mg,Ti (TLD-100) and other thermoluminescent materials and the dependence of the supralinearity on photon/electron energy. The UNIM is based on the radiation action of spatially correlated trapping centres (TCs) and luminescent centres (LCs), which results in localised (geminate) electron/hole recombination by quantum mechanical tunnelling. The linear dose response is mainly attributed to geminate recombination. UNIM simulations of the dose response of glow peak 5 in LiF:Mg,Ti following 500 and 8keV electron/photon irradiation are discussed. In addition, simulations of postirradiation photo-excitation that redistribute the electrons and holes in the various TCs and LCs are demonstrated to extend the region of linear dose response and reduce the supralinearity. Experimental verification of dose-response linearity for levels of dose ≤30Gy following both 3.65 and 5eV photon excitation is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call