Abstract

In this communication, we report the equilibrium and kinetic properties of the unfolding pathways of the native (pH 7.5) and alkaline molten globule (pH 10.5) states of the pyridoxal 5′-phosphate (PLP)-dependent enzyme 5-aminolevulinate synthase (ALAS). The stability of the molten globule state is adversely affected by thermal- and guanidine hydrochloride (GuHCl)-induced denaturation, and the equilibrium unfolding pathways, irrespective of pH, cannot be described with simple two-state models. Rapid kinetic measurements, in the presence of denaturing GuHCl concentrations, reveal that at pH 10.5, the rate of ALAS denaturation is 3 times faster than at pH 7.5. From pH jump experiments, comparable rates for the denaturation of the tertiary structure and PLP-microenvironment were discerned, indicating that the catalytic active site geometry strongly depends on the stable tertiary structural organization. Lastly, we demonstrate that partially folded ALAS tends to self-associate into higher oligomeric species at moderate GuHCl concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.