Abstract

Abstract. During the 1-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition, the German icebreaker Polarstern drifted through Arctic Ocean ice from October 2019 to May 2020, mainly at latitudes between 85 and 88.5∘ N. A multiwavelength polarization Raman lidar was operated on board the research vessel and continuously monitored aerosol and cloud layers up to a height of 30 km. During our mission, we expected to observe a thin residual volcanic aerosol layer in the stratosphere, originating from the Raikoke volcanic eruption in June 2019, with an aerosol optical thickness (AOT) of 0.005–0.01 at 500 nm over the North Pole area during the winter season. However, the highlight of our measurements was the detection of a persistent, 10 km deep aerosol layer in the upper troposphere and lower stratosphere (UTLS), from about 7–8 to 17–18 km height, with clear and unambiguous wildfire smoke signatures up to 12 km and an order of magnitude higher AOT of around 0.1 in the autumn of 2019. Case studies are presented to explain the specific optical fingerprints of aged wildfire smoke in detail. The pronounced aerosol layer was present throughout the winter half-year until the strong polar vortex began to collapse in late April 2020. We hypothesize that the detected smoke originated from extraordinarily intense and long-lasting wildfires in central and eastern Siberia in July and August 2019 and may have reached the tropopause layer by the self-lifting process. In this article, we summarize the main findings of our 7-month smoke observations and characterize the aerosol in terms of geometrical, optical, and microphysical properties. The UTLS AOT at 532 nm ranged from 0.05–0.12 in October–November 2019 and 0.03–0.06 during the main winter season. The Raikoke aerosol fraction was estimated to always be lower than 15 %. We assume that the volcanic aerosol was above the smoke layer (above 13 km height). As an unambiguous sign of the dominance of smoke in the main aerosol layer from 7–13 km height, the particle extinction-to-backscatter ratio (lidar ratio) at 355 nm was found to be much lower than at 532 nm, with mean values of 55 and 85 sr, respectively. The 355–532 nm Ångström exponent of around 0.65 also clearly indicated the presence of smoke aerosol. For the first time, we show a distinct view of the aerosol layering features in the High Arctic from the surface up to 30 km height during the winter half-year. Finally, we provide a vertically resolved view on the late winter and early spring conditions regarding ozone depletion, smoke occurrence, and polar stratospheric cloud formation. The latter will largely stimulate research on a potential impact of the unexpected stratospheric aerosol perturbation on the record-breaking ozone depletion in the Arctic in spring 2020.

Highlights

  • As part of the 1-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition (MOSAiC, 2021, September 2019 to October 2020), an ad-Published by Copernicus Publications on behalf of the European Geosciences Union.K

  • Ohneiser et al.: Wildfire smoke over the North Pole vanced multiwavelength polarization Raman lidar was operated on board the German icebreaker Polarstern (Knust, 2017), which served as the main MOSAiC platform for advanced remote sensing studies of the atmosphere

  • We presented a detailed optical and microphysical characterization of an unexpected upper troposphere and lower stratosphere (UTLS) smoke layer over the North Pole region in the winter half-year of 2019–2020

Read more

Summary

Introduction

As part of the 1-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition (MOSAiC, 2021, September 2019 to October 2020), an ad-. In this exceptional wildfire year 2019 (CAMS, 2021), there were numerous other fires within the Arctic Circle (e.g. in Alaska, Greenland, and northern Canada) It seems, so far, that none of them was strong enough to contribute to a noticeable enhancement of the AOT in the UTLS height range (Kloss et al, 2021). MODIS (Moderate Resolution Imaging Spectroradiometer) and CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) lidar measurements provide the observational basis in our discussion In this context, we were forced to explain why the CALIPSO aerosol-typing scheme misclassified the wildfire smoke as volcanic sulfate aerosol (Ansmann et al, 2021b). An introduction to our entire MOSAiC measurement programme and our research goals is provided by Engelmann et al (2021)

MOSAiC lidar data analysis
CALIPSO aerosol-typing challenge
MOSAiC observations of UTLS smoke
The smoke layer from August 2019 to May 2020
Nov 2019
Findings
Summary and outlook

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.