Abstract

Premise of the study:The use of genome skimming allows systematists to quickly generate large data sets, particularly of sequences in high abundance (e.g., plastomes); however, researchers may be overlooking data in low abundance that could be used for phylogenetic or evo-devo studies. Here, we present a bioinformatics approach that explores the low-abundance portion of genome-skimming next-generation sequencing libraries in the fan-flowered Goodeniaceae.Methods:Twenty-four previously constructed Goodeniaceae genome-skimming Illumina libraries were examined for their utility in mining low-copy nuclear genes involved in floral symmetry, specifically the CYCLOIDEA (CYC)-like genes. De novo assemblies were generated using multiple assemblers, and BLAST searches were performed for CYC1, CYC2, and CYC3 genes.Results:Overall Trinity, SOAPdenovo-Trans, and SOAPdenovo implementing lower k-mer values uncovered the most data, although no assembler consistently outperformed the others. Using SOAPdenovo-Trans across all 24 data sets, we recovered four CYC-like gene groups (CYC1, CYC2, CYC3A, and CYC3B) from a majority of the species. Alignments of the fragments included the entire coding sequence as well as upstream and downstream regions.Discussion:Genome-skimming data sets can provide a significant source of low-copy nuclear gene sequence data that may be used for multiple downstream applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.