Abstract

Underwater noise from vibratory pile driving was observed using a vertical line array placed at range 16 m from the pile source (water depth 7.5 m), and using single hydrophones at range 417 m on one transect, and range 207 and 436 m on another transect running approximately parallel to a sloping shoreline. The dominant spectral features of the underwater noise are related to the frequency of the vibratory pile driving hammer (typically 15-35 Hz), producing spectral lines at intervals of this frequency. The mean-square pressure versus depth is subsequently studied in third-octave bands. Depth and frequency variations of this quantity observed at the vertical line array are well modeled by a field consisting of an incoherent sum of sources distributed over the water column. Adiabatic mode theory is used to propagate this field to greater ranges and model the observations made along the two depth-varying transects. The effect of shear in the seabed, although small, is also included. Bathymetric refraction on the transect parallel to the shoreline reduced mean-square pressure levels at the 436-m measurement site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.