Abstract

P>The change in the rate of the Earth's rotation, length-of-day (LOD), is principally the result of movement and redistribution of mass in the Earth's atmosphere, oceans and hydrosphere. Numerous studies on the LOD excitations have been made from climatological/hydrological assimilation systems and models of the general circulation of the ocean. However, quantitative assessment and understanding of the contributions to the LOD remain unclear due mainly to the lack of direct global observations. In this paper, the total Earth's surface fluids mass excitations to the LOD at seasonal and intraseasonal timescales are investigated from the Jet Propulsion Laboratory Estimating Circulation and Climate of the Ocean (ECCO) model, the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and the European Center for Medium-Range Weather Forecasts (ECMWF) Re-analysis (ERA)-Interim, GRACE-derived surface fluids mass and the spherical harmonics coefficient C-20 from the satellite laser ranging (SLR) as well as combined GRACE+SLR solutions, respectively. Results show that the GRACE and the combined GRACE and SLR solutions better explain the geodetic residual LOD excitations at annual and semi-annual timescales. For less than 1 yr timescales, GRACE-derived mass is worse to explain the geodetic residuals, whereas SLR agrees better with the geodetic residuals. However, the combined GRACE and SLR results are much improved in explaining the geodetic residual excitations at intraseasonal scales.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.