Abstract

e12028 Background: Continuous exposure of breast cancer cells to adriamycin (ADR) induces the over-expression of P-glycoprotein (P-gp) and multiple drug resistance. However, the biochemical process and underlying mechanisms are not clear. Our previous study revealed that ADR increased reactive oxygen species (ROS) generation and reduced glutathione (GSH) biosynthesis, while N-acetylcysteine, the ROS scavenger, reversed the over-expressed P-gp induced by ADR. Methods: Based on MCF-7 breast cancer cells and the adriamycin-resistant MCF-7 subline (MCF-7R), we investigated the P-gp expression on mRNA, protein and function level by qPCR, western blotting, flow cytometry and laser scanning confocal and so on, under SLC7A11 down-regulation/over-expression, cystine depletion/supplement, increased ROS generation and combined factors. Results: The present study showed that ADR inhibited cystine influx (source material of GSH) and SLC7A11 transporter (in charge of cystine uptake) in MCF-7 cells. For the first time, we showed that a down-regulation/silence of SLC7A11, or cystine deprivation, or an enhanced exposure of ROS agents directly and significantly increased P-gp expression; yet, a combination of either an inhibited/silenced SLC7A11 or cystine deprivation and an increased ROS dramatically promoted the P-gp expression in MCF-7 cells. On the contrary, an over-expression of SLC7A11, or sufficiently supplementary cystine, or scavenger of ROS significantly depressed P-gp expression and activity. Moreover, the down-regulation of SLC7A11 and cystine deprivation induced an elevation of ROS and P-gp that could be reversed by N-acetylcysteine. It was suggested that ROS and SLC7A11/cystine were the two relevant factors responsible for the upregulated expression and function of P-gp. Conclusions: This study provided the direct evidences suggesting that ROS triggered over-expression of P-gp and demonstrated that the combination of either an inhibition of SLC7A11 or cystine influx and elevated ROS was the underlying mechanism contributing to P-gp over-expression induced by ADR. It was indicated that the SLC7A11 might be a potential target modulating ADR resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call