Abstract

Photochemical oxidation (including photolysis and OH-initiated reactions) of aromatic hydrocarbon produces carbonyls, which are involved in the formation of secondary organic aerosols (SOA). However, the mechanism of this process remains incompletely understood. Herein, the monocarbonyl-dicarbonyl interconversion and its role in SOA production were investigated via a series of photochemical oxidation experiments for m-xylene and representative carbonyls. The results showed that SOA mass concentration peaked at 113.5 ± 3.5 μg m−3 after m-xylene oxidation for 60 min and then decreased. Change in the main oxidation products from dicarbonyl (e.g., glyoxal, methylglyoxal) to monocarbonyl (e.g., formaldehyde) was responsible for this decrease. The photolysis of methylglyoxal or glyoxal produced formaldehyde, favoring SOA formation, while photopolymerization of formaldehyde to glyoxal decreased SOA production. The presence of ·OH altered the balance of photolysis interconversion, resulting in greater production of formaldehyde and SOA from glyoxal than methylglyoxal. Both photolysis and OH-initiated transformations of glyoxal to formaldehyde were suppressed by methylglyoxal, while glyoxal accelerated the reaction of ·OH with methylglyoxal to generate products which reversibly converted to glyoxal and methylglyoxal. These interconversion reactions reduced SOA production. The present study provides a new research perspective for the contribution mechanism of carbonyls in SOA formation and the findings are also helpful to efficiently evaluate the atmospheric fate of aromatic hydrocarbons.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.