Abstract

In 2022 November, the James Webb Space Telescope (JWST) returned deep near-infrared images of A2744—a powerful lensing cluster capable of magnifying distant, incipient galaxies beyond it. Together with existing Hubble Space Telescope (HST) imaging, this publicly available data set opens a fundamentally new discovery space to understand the remaining mysteries of the formation and evolution of galaxies across cosmic time. In this work, we detect and measure some 60,000 objects across the 49 arcmin2 JWST footprint down to a 5σ limiting magnitude of ∼30 mag in 0.″32 apertures. Photometry is performed using circular apertures on images matched to the point-spread function (PSF) of the reddest NIRCam broad band, F444W, and cleaned of bright cluster galaxies and the related intracluster light. To give an impression of the photometric performance, we measure photometric redshifts and achieve a σ NMAD ≈ 0.03 based on known, but relatively small, spectroscopic samples. With this paper, we publicly release our HST and JWST PSF-matched photometric catalog with optimally assigned aperture sizes for easy use, along with single aperture catalogs, photometric redshifts, rest-frame colors, and individual magnification estimates. These catalogs will set the stage for efficient and deep spectroscopic follow up of some of the first JWST-selected samples in summer of 2023.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.