Abstract

BackgroundVariants of uncoupling protein genes UCP1 and UCP2 have been associated with a range of traits. We wished to evaluate contributions of known UCP1 and UCP2 variants to metabolic traits in the Insulin Resistance and Atherosclerosis (IRAS) Family Study.MethodsWe genotyped five promoter or coding single nucleotide polymorphisms (SNPs) in 239 African American (AA) participants and 583 Hispanic participants from San Antonio (SA) and San Luis Valley. Generalized estimating equations using a sandwich estimator of the variance and exchangeable correlation to account for familial correlation were computed for the test of genotypic association, and dominant, additive and recessive models. Tests were adjusted for age, gender and BMI (glucose homeostasis and lipid traits), or age and gender (obesity traits), and empirical P-values estimated using a gene dropping approach.ResultsUCP1 A-3826G was associated with AIRg in AA (P = 0.006) and approached significance in Hispanic families (P = 0.054); and with HDL-C levels in SA families (P = 0.0004). Although UCP1 expression is reported to be restricted to adipose tissue, RT-PCR indicated that UCP1 is expressed in human pancreas and MIN-6 cells, and immunohistochemistry demonstrated co-localization of UCP1 protein with insulin in human islets. UCP2 A55V was associated with waist circumference (P = 0.045) in AA, and BMI in SA (P = 0.018); and UCP2 G-866A with waist-to-hip ratio in AA (P = 0.016).ConclusionThis study suggests a functional variant of UCP1 contributes to the variance of AIRg in an AA population; the plausibility of this unexpected association is supported by the novel finding that UCP1 is expressed in islets.

Highlights

  • Variants of uncoupling protein genes UCP1 and Uncoupling protein 2 (UCP2) have been associated with a range of traits

  • UCP2 A55V was associated with waist circumference (P = 0.045) and UCP2 G-866A with waist-to-hip ratio (WHR) in AA (P = 0.016), only in analyses unadjusted for BMI

  • Associations were detected between genotyped SNPs and metabolic traits, with measures related to adiposity: UCP2 SNPs with waist circumference, BMI and waist-to-hip ratio, significance levels for these associations were modest (Table 3)

Read more

Summary

Introduction

Variants of uncoupling protein genes UCP1 and UCP2 have been associated with a range of traits. Uncoupling protein 2 (UCP2) inhibits glucose stimulated insulin secretion, and models of type 2 diabetes are associated with increased expression in islets [2]. Polymorphisms in the uncoupling protein genes UCP1 (4q31.21) and UCP2 (11q13.4) have been associated with a number of measures of glucose homeostasis and adiposity. These include associations between UCP2 G866A and A55V and glucose-induced insulin secretion [3,4,5], as well as obesity and metabolism [6,7,8]. UCP1 A-3826G and M229L have been found to be associated with type 2 diabetes [11,13]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.