Abstract

Since the Voyager 2 encounter in early 1986, several investigators have attempted to localize the source regions of the smooth high‐frequency radio emission which was observed by the planetary radio astronomy experiment at the nightside of Uranus. The various studies (most of them are based on the offset tilted dipole (OTD) model of the Uranian magnetic field) yielded significantly different source locations around the southern magnetic pole of Uranus. This may be a consequence of the individual a priori assumptions of the source model. However, the simplicity of the OTD model (Ness et al., 1986) also cannot adequately represent the complexity of the magnetic field at the radio source locations near the planet. The aim of this study is twofold. (1) We reanalyze the various source locations given in the literature (most of them are based on the OTD model) in the frame of the Q3 magnetic field model (Connerney et al., 1987). Our analysis moves some of the previously determined source locations from open toward closed field lines; however, the uncertainty due to the nonuniqueness of the Q3 model remains too large to exclude the possibility that open field lines are the source of smooth Uranian kilometric radiation. (2) We calculate the uncertainty of the radio source locations imposed by the nonuniqueness of the Q3 and OTD magnetic field models. We construct solutions by using generalized inversion techniques (Connerney, 1981) to obtain estimates of those magnetic field parameters (spherical harmonic coefficients up to degree and order 6) that are constrained by the magnetometer observations. The nonuniqueness of the resulting magnetic field models translates into an uncertainty about the radio source locations of some 20° in Uranocentric coordinates at altitudes of about 1.5 Uranian radii (RU). The present results are important for radio source locations at all the outer planets whose magnetic field geometries are represented by nonunique magnetic field models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call