Abstract
Agricultural soils emit nitrous oxide (N2O), a greenhouse gas and the primary source of nitrogen oxides which deplete stratospheric ozone. Agriculture has been estimated to be the largest anthropogenic N2O source. In New Zealand (NZ), pastoral agriculture uses half the land area. To estimate the annual N2O emissions from NZ's agricultural soils, the nitrogen (N) inputs have been determined and multiplied by an emission factor (EF), the mass fraction of N inputs emitted as N2ON. To estimate the associated uncertainty, we developed an analytical method. For comparison, another estimate was determined by Monte Carlo numerical simulation. For both methods, expert judgement was used to estimate the N input uncertainty. The EF uncertainty was estimated by meta-analysis of the results from 185 NZ field trials. For the analytical method, assuming a normal distribution and independence of the terms used to calculate the emissions (correlation = 0), the estimated 95% confidence limit was ±57%. When there was a normal distribution and an estimated correlation of 0.4 between N input and EF, the latter inferred from experimental data involving six NZ soils, the analytical method estimated a 95% confidence limit of ±61%. The EF data from 185 NZ field trials had a logarithmic normal distribution. For the Monte Carlo method, assuming a logarithmic normal distribution for EF, a normal distribution for the other terms and independence of all terms, the estimated 95% confidence limits were −32% and +88% or ±60% on average. When there were the same distribution assumptions and a correlation of 0.4 between N input and EF, the Monte Carlo method estimated 95% confidence limits were −34% and +94% or ±64% on average. For the analytical and Monte Carlo methods, EF uncertainty accounted for 95% and 83% of the emissions uncertainty when the correlation between N input and EF was 0 and 0.4, respectively. As the first uncertainty analysis of an agricultural soils N2O emissions inventory using “country-specific” field trials to estimate EF uncertainty, this can be a potentially informative case study for the international scientific community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.