Abstract

Lotus-type porous metals with many straight pores are attractive for use as heat-sinks because a large heat-transfer capacity can be obtained, due to the small diameter of the pores. In order to use lotus-type porous copper effectively as a heat sink, it is important to know the effective thermal conductivity considering the effect of pores on heat conduction in the material. Since these metals have anisotropic pores, a steady-state comparative longitudinal heat-flow method for measuring thermal conductivity, referring to an ASTM standard, is better than other methods. So far, the effective thermal conductivity of lotus-type porous copper has been measured by using specimens of different thickness (the SCHF-DT method). In this paper, the uncertainty in the effective thermal conductivity of a specimen measured using this method was evaluated by comparison between numerical analysis and current experimental data. The following conclusions were drawn: 1) The uncertainty showed good agreement with the uncertainty analysis; 2) The contribution of the thermal grease thickness was large, based on a combined standard uncertainty analysis; and, 3) The effective thermal conductivity perpendicular to the pores of lotus copper can be measured within 10% uncertainty by this method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.