Abstract
We study the valuation and hedging of unit-linked life insurance contracts in a setting where mortality intensity is governed by a stochastic process. We focus on model risk arising from different specifications for the mortality intensity. To do so we assume that the mortality intensity is almost surely bounded under the statistical measure. Further, we restrict the equivalent martingale measures and apply the same bounds to the mortality intensity under these measures. For this setting we derive upper and lower price bounds for unit-linked life insurance contracts using stochastic control techniques. We also show that the induced hedging strategies indeed produce a dynamic superhedge and subhedge under the statistical measure in the limit when the number of contracts increases. This justifies the bounds for the mortality intensity under the pricing measures. We provide numerical examples investigating fixed-term, endowment insurance contracts and their combinations including various guarantee features. The pricing partial differential equation for the upper and lower price bounds is solved by finite difference methods. For our contracts and choice of parameters the pricing and hedging is fairly robust with respect to misspecification of the mortality intensity. The model risk resulting from the uncertain mortality intensity is of minor importance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.